A Geodesic-Based Riemannian Gradient Approach to Averaging on the Lorentz Group

نویسندگان

  • Jing Wang
  • Huafei Sun
  • Didong Li
چکیده

In this paper, we propose an efficient algorithm to solve the averaging problem on the Lorentz group O(n, k). Firstly, we introduce the geometric structures of O(n, k) endowed with a Riemannian metric where geodesic could be written in closed form. Then, the algorithm is presented based on the Riemannian-steepest-descent approach. Finally, we compare the above algorithm with the Euclidean gradient algorithm and the extended Hamiltonian algorithm. Numerical experiments show that the geodesic-based Riemannian-steepest-descent algorithm performs the best in terms of the convergence rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Riemannian L Averaging on the Lie Group of Nonzero Quaternions

This paper discusses quaternion L geometric weighting averaging working on the multiplicative Lie group of nonzero quaternionsH∗, endowed with its natural bi-invariant Riemannian metric. Algorithms for computing the Riemannian L center of mass of a set of points, with 1 ≤ p ≤ ∞ (i.e., median, mean, L barycenter and minimax center), are particularized to the case of H∗. Two different approaches ...

متن کامل

A nonparametric Riemannian framework for processing high angular resolution diffusion images and its applications to ODF-based morphometry

High angular resolution diffusion imaging (HARDI) has become an important technique for imaging complex oriented structures in the brain and other anatomical tissues. This has motivated the recent development of several methods for computing the orientation probability density function (PDF) at each voxel. However, much less work has been done on developing techniques for filtering, interpolati...

متن کامل

Least-Squares on the Real Symplectic Group

The present paper discusses the problem of least-squares over the real symplectic group of matrices Sp(2n,R). The least-squares problem may be extended from flat spaces to curved spaces by the notion of geodesic distance. The resulting non-linear minimization problem on manifold may be tackled by means of a gradient-descent algorithm tailored to the geometry of the space at hand. In turn, gradi...

متن کامل

Riemannian Means on Special Euclidean Group and Unipotent Matrices Group

Among the noncompact matrix Lie groups, the special Euclidean group and the unipotent matrix group play important roles in both theoretic and applied studies. The Riemannian means of a finite set of the given points on the two matrix groups are investigated, respectively. Based on the left invariant metric on the matrix Lie groups, the geodesic between any two points is gotten. And the sum of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017